Mhd versus Kinetic Effects in the Solar Coronal Heating: a Two Stage Mechanism

نویسنده

  • David Tsiklauri
چکیده

Using Particle-In-Cell simulations i.e. in the kinetic plasma description the discovery of a new mechanism of parallel electric field generation was recently reported. Here we show that the electric field generation parallel to the uniform unperturbed magnetic field can be obtained in a much simpler framework using the ideal magnetohydrodynamics (MHD) description. In ideal MHD the electric field parallel to the uniform unperturbed magnetic field appears due to fast magnetosonic waves which are generated by the interaction of weakly non-linear Alfvén waves with the transverse density inhomogeneity. In the context of the coronal heating problem a new two stage mechanism of plasma heating is presented by putting emphasis, first, on the generation of parallel electric fields within an ideal MHD description directly, rather than focusing on the enhanced dissipation mechanisms of the Alfvén waves and, second, dissipation of these parallel electric fields via kinetic effects. It is shown that for a single Alfvén wave harmonic with frequency ν = 7 Hz, and longitudinal wavelength λA = 0.63 Mm for a putative Alfvén speed of 4328 km s, the generated parallel electric field could account for 10% of the necessary coronal heating requirement. We conjecture that wide spectrum (10 − 10 Hz) Alfvén waves, based on the observationally constrained spectrum, could provide the necessary coronal heating requirement. By comparing MHD versus kinetic results we also show that there is a clear indication of the anomalous resistivity which is 100s of times greater than the classical Braginskii value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mechanism for parallel electric field generation in the MHD limit: possible implications for the coronal heating problem in the two stage mechanism

Context. Using Particle-In-Cell simulations i.e. in the kinetic plasma description, the discovery of a new mechanism of parallel electric field generation was recently reported. Aims. We show that the electric field generation parallel to the uniform unperturbed magnetic field can be obtained in a much simpler framework using the ideal magnetohydrodynamics (MHD) description. Methods. We solve n...

متن کامل

Wave Modeling of the Solar Wind

The acceleration and heating of the solar wind have been studied for decades using satellite observations and models. However, the exact mechanism that leads to solar wind heating and acceleration is poorly understood. In order to improve the understanding of the physical mechanisms that are involved in these processes a combination of modeling and observational analysis is required. Recent mod...

متن کامل

Generation of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules

Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...

متن کامل

The Sun as a MHD generator: application of a new heating mechanism for the coronal loops and closed magnetic structures

We investigate a possibility of heating of the loops and other closed magnetic structures in active regions of the solar corona by the flow of solar wind (plus other flows that may be present) across the magnetic field lines (that are perpendicular to the flow), in a similar manner as a conventional MHD generator works. A simple model is formulated which allows to calculate the typical currents...

متن کامل

Nonlinear wave heating of solar coronal loops

Theheating ofmagnetically closed structures (loops) in the solar corona by the resonant absorption of incident waves is studied by means of numerical simulations in the framework of nonlinear resistive magnetohydrodynamics (MHD). It is shown that the dynamics in the resonant layer is indeed very nonlinear for typical coronal parameters. The effect of the nonlinearity on the efficiency of the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006